Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract The lungs of squamate reptiles (lizards and snakes) are highly diverse, exhibiting single chambers, multiple chambers, transitional forms with two to three chambers, along with a suite of other anatomical features, including finger-like epithelial projections into the body cavity known as diverticulae. During embryonic development of the simple, sac-like lungs of anoles, the epithelium is pushed through the openings of a pulmonary smooth muscle mesh by the forces of luminal fluid pressure. This process of stress ball morphogenesis generates the faveolar epithelium typical of squamate lungs. Here, we compared embryonic lung development in brown anoles, leopard geckos, and veiled chameleons to determine if stress ball morphogenesis is conserved across squamates and to understand the physical processes that generate transitional-chambered lungs with diverticulae. We found that epithelial protrusion through the holes in a pulmonary smooth muscle mesh is conserved across squamates. Surprisingly, however, we found that luminal inflation is not conserved. Instead, leopard geckos and veiled chameleons appear to generate their faveolae via epithelial folding downstream of epithelial proliferation. We also found experimental and computational evidence suggesting that the transitional chambers and diverticulae of veiled chameleon lungs develop via apical constriction, a process known to be crucial for airway branching in the bird lung. Thus, distinct morphogenetic mechanisms generate epithelial diversity in squamate lungs, which may underpin their species-specific physiological and ecological adaptations.more » « lessFree, publicly-accessible full text available September 4, 2026
- 
            Biophysical signaling organizes forces to drive tissue morphogenesis, a process co-opted during disease progression. The systematic buildup of forces at the tissue scale is energetically demanding. Just as mechanical forces, gene expression, and concentrations of morphogens vary spatially across a developing tissue, there might similarly be spatial variations in energy consumption. Recent studies have started to uncover the connections between spatial patterns of mechanical forces and spatial patterns of energy metabolism. Here, we define and review the concept of energy metabolism during tissue morphogenesis. We highlight experiments showing spatial variations in energy metabolism across several model systems, categorized by morphogenetic motif, including convergent extension, branching, and migration. Finally, we discuss approaches to further enable quantitative measurements of energy production and consumption during morphogenesis.more » « less
- 
            Receptor tyrosine kinases (RTKs) are major signaling hubs in metazoans, playing crucial roles in cell proliferation, migration, and differentiation. However, few tools are available to measure the activity of a specific RTK in individual living cells. Here, we present pYtags, a modular approach for monitoring the activity of a user-defined RTK by live-cell microscopy. pYtags consist of an RTK modified with a tyrosine activation motif that, when phosphorylated, recruits a fluorescently labeled tandem SH2 domain with high specificity. We show that pYtags enable the monitoring of a specific RTK on seconds-to-minutes time scales and across subcellular and multicellular length scales. Using a pYtag biosensor for epidermal growth factor receptor (EGFR), we quantitatively characterize how signaling dynamics vary with the identity and dose of activating ligand. We show that orthogonal pYtags can be used to monitor the dynamics of EGFR and ErbB2 activity in the same cell, revealing distinct phases of activation for each RTK. The specificity and modularity of pYtags open the door to robust biosensors of multiple tyrosine kinases and may enable engineering of synthetic receptors with orthogonal response programs.more » « less
- 
            The function of the lung is closely coupled to its structural anatomy, which varies greatly across vertebrates. Although architecturally simple, a complex pattern of airflow is thought to be achieved in the lizard lung due to its cavernous central lumen and honeycomb-shaped wall. We find that the wall of the lizard lung is generated from an initially smooth epithelial sheet, which is pushed through holes in a hexagonal smooth muscle meshwork by forces from fluid pressure, similar to a stress ball. Combining transcriptomics with time-lapse imaging reveals that the hexagonal meshwork self-assembles in response to circumferential and axial stresses downstream of pressure. A computational model predicts the pressure-driven changes in epithelial topology, which we probe using optogenetically driven contraction of 3D-printed engineered muscle. These results reveal the physical principles used to sculpt the unusual architecture of the lizard lung, which could be exploited as a novel strategy to engineer tissues.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
